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A Model-based Approach for Detection of Runways and Other Objects in

Image Sequences Acquired Using an On-board Camera

Preface

This research was initiated as a part of the Advanced SenSor and Imaging _vstem Technology

(ASSIST) program at NASA Langley Research Center. The prima_ goal of this rese"-arch is the

development of image analysis algorithms for the detection of runways and other objects using

an on-board camera. Initial effort was concentrated on images acquired using a passive

millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor

visibility conditions due to atmospheric fog are characterized by very low spatial resolution but

good image contrast compared to those images obtained using sensors operating in the visible

spectrum. Algorithms developed for analyzing these images using a model of the runway and

other objects are described in Part I of this report. Experimental verification of these algorithms

was limited to a sequence of images simulated from a single frame of PMMW image.

Subsequent development and evaluation of algorithms was done using video image sequences.

These images have better spatial and temporal resolution compared to PMMW images.

Algorithms for reliable recognition of runways and accurate estimation of spatial position of

stationary objects on the ground have been developed and evaluated using several image

sequences. These algorithms are described in Part II of this report. A list of all publications
resulting from this work is also included.
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Part I

Model-based Approach for Detection of Objects in Low Resolution

Passive-Millimeter Wave Images



I. Model-based Approach for Detection of Objects in Low Resolution

Passive-Millimeter Wave Images

Abstract

m

[41

In this part of the report we describe a knowledge-based vision system to assist the

pilots in landing maneuvers under restricted visibiltly conditions. The system has been

designed to analyze image sequences obtained from Passive Millimeter Wave (PMMW)

imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and

other objects on or near runways. PMMW sensors have good response in foggy

atmosphere; but thier spatial resolution is very low. However, additional data such as

airport model and approximate position and orientation of aircraft are available. We

exploit these data to guide our knowledge-based system to locate objects in the low

resolution image and generate warning signals to alert pilots. We also derive analytical

expressions for the accuracy of the camera position estimate obtained by detecting the

position of known objects in the image.
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1. Introduction

Federal regulations specify the minimum visibility conditions under which airlines may

take off and land. These minima are a function of the types of airplane and airport

equipment. Therefore, there is a great deal of interest in imaging sensors which can see

through fog and produce a real worm display which, when combined with symbolic or

pictorial guidance information, could provide the basis for a landing system with lower

visual minimum capability than those presently being used (Hatfield & Parrish, 1990).

Since the energy attenuation in the visible spectrum due to fog is very large (Young et.

al., 1990/1991), sensors are being designed to operate at lower frequencies (e.g. 94 GHz)

where the attenuation is lower providing the ability to see through fog. NASA Langley

Research Center, in cooperation with industry, is performing research on an on-board

imaging system using a passive sensor operating at this frequency. Images from such

sensors are of very low spatial resolution (Fig. 1.1). However, additional supporting

information in the form of knowledge about the airport and the position, orientation and

velocity of aircraft is generally available. Thus a model-based image analysis approach is

feasible to segment the image and to detect and track objects on the ground. Information

extracted from such an analysis is useful to generate warning signals to the pilot of any

potential hazard. This part of the report describes such a model-based technique, which

makes use of a priori information about the geometric model of the airport and camera
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positionand attitudedataprovidedby the GlobalPositioningSystem(GPS)and other

instruments.
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Fig. 1.1: The Passive Millimeter-Wave image.

The geometric model of the airport contains positions of the runways/taxiways and

buildings, the navigation instruments provide the position of the aircraft, and on-board

instruments provide the orientation of the aircraft (yaw, pitch and roll). We use this

information to define regions of interest in the image where important features such as

runways/taxiways, the horizon, etc. are likely to be present. Edges corresponding to these

features of interest are detected within these regions. After delineating regions

representing runways/taxiways, we look for objects inside and outside these regions.

The data from radio navigation instruments are known only upto a certain accuracy

depending upon the type of radio navigation instruments. For example, GPS data is

updated once every second and it is likely that a few such updates are missed making

camera position data to be a few hundreds feet off. On-board insmament data is generally
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useful to obtain more accurate camera position data than the GPS-based data. An

alternative approach is to use the information about the location of detected objects in the

images with known world coordinates (e.g. intersection of runways/taxiways, corners of

buildings, etc.) to obtain an improved estimate of the camera position. This requires an

analytical study of the relationships among the camera parameters, the resolution of the

images, and the distances between the aircraft and objects.

Dickmanns (1988) described a computer vision system for flight vehicles. The main

emphasis was to build a vision system which can achieve real-time performance with the

microprocessors available at that time. In order to speed up the system, it is extremely

important to avoid processing those regions which provide little information for scene

understanding or navigation. Hence, having the runway geometric model is useful in

locating regions of interest and concentrate processing only within those regions. Smith

et. al. (1992) developed a vision system which assist the pilot during low-altitude flight to

detect and locate obstacles near the helicopter's intended flight path. The system

recursively estimates range using an extended Kalman f'tlter with knowledge of the

camera's motion, giving incremental update of obstacles found in the flight path. Sull and

Ahuja (1994) proposed a system for recovering motion and structure parameters from a

monocular flight image sequence. The system also uses intermediate results of the

recovery process to synthesize an image sequence that depicts the motion and structure.

The key feature of their approach is an integrated use of multiple image attributes or cues,
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such as regions, point features, optical flow, texture gradient, and vanishing line, making

the estimation more robust. Our approach makes use of a priori knowledge of the runway

model which is useful in reducing unnecessary processing of images, in locating the

runway in order for the aircraft to be heading in the right direction, and in detecting

objects of interest on the ground. The system will report warning signals for objects

which may jeopardize the landing.

In Section 2 we present a block diagram of the complete system. In Section 3 we

describe the analytical model that establishes the relationship between the position,

orientation and other physical parameters of the camera and the attributes of the captured

images. This model is useful to calculate the accuracy of camera position estimation using

image based features. In Section 4 we present the method for defining the regions of

interest in the image using the camera parameters and airport model. Section 5 includes

image processing steps that are used to fred regions corresponding to major features in the

image and to detect objects in these regions. Experimental results are presented in Section

6. We conclude the paper with a summary and a brief description of future work.

m

l

_.I

2. System Description

In this section, we describe the functions of various modules of the system shown in

Fig. 2.1 and the interaction between them. The input model of the airport contains

positions of the runways/taxiways, and buildings. The model transformation module will
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take this model and the camera state information (position and orientation) as inputs to

define the regions of interest in the image plane.

The image processing algorithms in the feature detection module operates within these

regions of interest to detect the edges of the runway, horizon, etc. in the image. An edge

is fitted to the edge pixels if enough edge pixels are found within the regions of interest.

The module outputs parameters which define major regions in the input image.

=--
L_ Image

Airport

t Warning

Airport Signals

Model Model Feature Object Motion

-- Ib1 Transformation Detection De{ection Estimation __

Camera

 am_[ jState Cstm2r a Ct_7:r a

Estimation [_

l
Instrument

Fig. 2.1 System Block diagram

The object detection module detects objects in the image using different thresholds for

each region. For example, since detection of objects on the runway is extremely
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important, a lower threshold is used to flag every object even if the contrast is low

whereas a higher threshold is used to detect objects which are outside the runway such as

buildings, etc. Locations of detected objects with known world coordinates is useful to

estimate camera state parameters.

The motion estimation module uses dynamic scene analysis methods to estimate

camera state parameters as well as to detect velocities of objects on the ground. The

outputs from this module will be useful to detect potential collisions and generate warning

signals as appropriate.

The camera state estimation module integrates information obtained about the

position and velocity of the aircraft from various sensors and modules and outputs

necessary data to the model transformation module.

3. Accuracy of Camera State Estimation from Image-based Features

As we need to use the camera state estimated from locating features of known objects

in the image during the period when the GPS is not updated, it is necessary to know the

accuracy of such estimated positions and the factors that decide the accuracy. Hence, an

analytical model that establishes the relationship between the camera parameters and the

attributes of captured images is necessary for guiding the image analysis system. Sensor

positional parameters include range (distance from the aircraft to the runway threshold),
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cross range (distance from the aircraft to the runway center line), altitude, and pitch, roll

and yaw angles. Sensor imaging attributes include the number of pixels in the image and

the optical angular view measured in degrees. We derive the inter-relationships among

these parameters. Using these relationships we calculate the accuracy of the estimate of

camera position based on a minimum resolvable movement of features by one pixel in the

image. We obtain these accuracies for three different types of cameras (PMMW, FLIR,

HDTV) at six ranges.

3.1. Analysis

Throughout the analysis, for convenience, we assume that the sensor is located at the

center of gravity of the airplane. Hence we can use the terms sensor position and aircraft

position interchangeably. We also neglect the effect of curvature of the earth. The system

of reference axis that forms the basis of system of notations used to describe the position

of the sensor is shown in Fig. 3.1 The figure shows an airplane with three mutually

perpendicular axes---pitch, roll and yaw---passing through the center of gravity of the

airplane. The image plane is assumed to be perpendicular to the rolling axis with its

vertical and horizontal axes coinciding with the yawing and the pitching axis of the

airplane, respectively.
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World coordinate system

Center of gravity

\" I

'

Lateral or _ Longitudinal or

pitching axis Vertical or rolling axis

yawing axis

Fig. 3.1 Airplane body axes

(X c,Zc) --_ X

(Xc, Yc) -_ X

D

Fig. 3.2 Image obtained by the sensor projected towards the ground. Shaded area is the

ground area covered by the sensor
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Fig. 3.2 shows an imaging situation during landing where the aircraft is at (X c, Yc, Zc),

with pitching angle 0, zero yaw and zero roll angle. Let a = 90°-0. The field of view of

the camera is determined by two viewing angles: Aa defined in the same plane as 0 and AI3

at right angles to Aa (Aa determines the vertical extent of the image and AI3 its horizontal

extent). Even though the image obtained by the sensor is always a rectangle, the ground

area captured by the sensor is a trapezoid ABCD whose side length and area depends on

Aa, AI3 and various other sensor parameters like position, orientation etc. Note that a

pixel in the image plane corresponds to a patch on the ground plane. We refer to this as a

pixel-patch (see Fig. 3.3).

_3.

EJ

Consider a point feature which has been detected at some pixel (p, q). Let the actual

world coordinates of this feature be (P, Q, 0). Since a pixel represents a patch on the

ground, the camera could change in its position by certain amount while still retaining the

image of the feature at the same pixel (p, q). Hence a camera pose estimation by passive

triangulation will always give the same camera pose for nearby camera positions unless the

change in camera position is large enough for the feature to be observed in the

neighboring pixel. We define this minimum change in camera displacement as the

sensitivity of the camera. Note that this is a measure of accuracy of camera position

estimate and is a function of the camera, image size in number of pixels, angular

resolution, and the pixel location (p, q) in the image plane.
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Let N x and Ny represent the number of pixels in the vertical and horizontal directions,

respectively. The pixels are numbered -N x ..... 0 ..... Nx/2-1 in the vertical direction and

-Ny .... ,0 ..... Ny/2-1 in the horizontal direction. The rolling axis of the plane is assumed

to pass through the bottom right corner of the patch on the ground plane which

corresponds to the center pixel in the image plane. Other pixels are referenced in a similar

manner. The coordinates of the reference corner of the ground area covered by a pixel (19,

q) can be estimated by the following relations.

Atx.,
X = X c + Z c tan(ct + p-_x )

Y =Yc + Zc tan(qAsc_-.B). (3.1)

cos(or + p_x ) Ny

For a non zero rolling angle _b, the ground coordinates (X', Y3 which corresponds to a

pixel (p, q) in the image plane are obtained by replacing (p, q) in the above equation by

(p', q'), where

p' = p cos d_- q sin _, and

q" = p sin t_+ q cos tb.
(3.2)

Since a pixel-patch is referenced by its bottom right corner of the pixel, the other three

corners become the reference of its three neighboring pixels-patch as shown in Fig. 3.4.

Thus, the four corners of this pixel-patch (X[, Y/'), i = 1, 2, 3, 4, are obtained by using Eq.

(3.1), where (p, q) are replaced by (p[,q[), where
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q_ = Pi sin _ + qi cos _b,
(3.3)
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(x3, r3)
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1
,l

pixel (p, q)

- pixel (0, O)

(X4, Y4 ) (X1, Yl )

Fig. 3.3 Ground area covered by the senosr. Each small trapezoid corresponds to a pixel

in the actual image
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m Fig. 3.4 A pixel (p, q) projected towards the ground
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Eq. (3.1) explicitly gives the relationship between the camera parameters (X c, Yc, Zc),

0, dO, and a ground point corresponding to a pixel (p, q). We are now interested in

computing the sensitivity of the imagery sensor. This is defined as the minimum change in

a camera parameter that would move a fixed ground point to the next pixel in the image

plane. We obtain this by taking the partial derivative of X_ and YI' with respect to the

corresponding parameters. For example,

_ 3X_ and DY 3Y(ox - Xc
=__

W

m

,r

mu

_z

w

This derivation is an approximation to the amount of change in Xf for unit change in

X c. Thus we estimate that the amount of change in X c in order to change Xf to X_, or YI'

to Y,_ (which define the comers of adjacent pixels) as

_

Note that S_, _-.o, as expected. Sensitivity with reference to other parameters is defined in

a similar manner. These are summarized in Table 3.1.

Sensor sensitivity is a function of various sensor parameters and sensor attitudes.

Since the sensor plane is inclined to the ground plane, the sensitivity varies in the vertical

and horizontal direction along the sensor plane and hence is a function of pixel number (p,

q). Equivalently, the accuracy of estimation sensor position using ground math data is a
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Table 3.1: Sensor positional sensitivity equations.

SPP

r.

Sensor Sensitivity at (p, q)

S_o 2Z_ sin(cos _. Act / Nx)

cos(2a + AcxIN x (2p+ 1) cos _- 2q sin ¢) + 1

oo
00

S_ {Zc tan(q_A[_/Ny)lcos(a+p_Aa]Nx)l-

{Z c tan(q_A[5 / Ny ) / cos(or + l_ Aa ] N x )]

S_ S_c cos(a+p_Aa/Nx)/tan(q_A_lNy )

SX SXc cos2(a+p_Aa]Nx)]Zc

cos2
Zc tan(q_A[_lNy)sin(a+p_AalNx)

2Z c sin(cos _- Act / N x)

cos(2a + A_x/ Nx(2p+ l)cos#- 2qsin_)+ l

S_ S_ /Zc(A6B_+BSA/6,) oo

Sensor Sensitivity at (0,0) with _=0
2Z c sin(A_x/N x )

cos(2cx + Aa/ Nx )+ l

O0

O0

2Zcsin( 13/N )
cosctcos(AfJ/Ny)+l

2Z c sin(Aa / N x) / sin(2ct / N x )

sin(Atx / N x ) / {cos a / cos(tz + Atx / N x )}

A = 1] cos(ix + p_Act ] Nx ); B = tan(q_A[3 ] Ny); _B / 5dp= (p cos dp- q sin _)(AI5 / Ny)co_ 2 (q[A[$ ] Ny );
_A/ _= tan( a + PfAal Ny ) (- p sin _-q cos tD(Aa / Nx )cOs(a +p_Aod N_); a=90*+0;

(P.ql )=(P,q); (P4 ,q4)=(P,q+l); p[=Pl COS_-ql Sin_; p_ =P4 COSd_-q4Sin_; q_=p_ Sintk+q_cos _);
q4 --P4 sln t_+q4coS_;

SPP: Sensor Positioaal Parameters Sensor Characteristics

(Xc,Yc,Zc) Sensor position Vertical Horizontal

0 Pitch angle Field of view Aa AB

Roll angle Number of pixels N_ ivy

Sensitivity: Minimum change in the sensor positional parameters (Xr, Yc, Zr, O, d_) that will make the object to
appear in the next pixel either in the vertical (X: hence called as semitivity in x direction) or in the horizontal

(Y: hence called as sensitivity in y direction) direction of the sensor plane. S/: Sensitivity in the direction )" due

to the sensor positional parameter 'i' computed at pixel (p, q) in the image plane.
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function of pixel position as well as other parameters. For a given range, the estimation

using features that are observed at the top half of the sensor are less accurate because of

the large ground area represented by these pixels. Also for a given p, the accuracy

decreases as we move towards the border of the sensor in the horizontal direction. In

summary, the accuracy of estimation is a function of sensor characteristic and the ratio of

the sensor view angle to the number of pixels in the image.

3.2. Quantitative Results and Discussions

The sensitivity analysis described in the previous section was applied to three different

sensors (Table 3.2) at six different positions (Table 3.3). Sensitivities sXc, Srr, and SzX at

the aim point (i.e., p=0, q=0) for various sensor positions (Table 3.3) are plotted in Figs.

3.5, 3.6 and 3.7 respectively. In all plots sensitivity to range sX was sealed down by a

factor of 10. Note that Szrc is larger than SzX at (0, 0) and hence a feature would move to

the next horizontal pixel before it moves to the next vertical pixel. Thus only SzX is

important.

As expected, the sensitivity is the best for the sensor with the highest pixel resolution.

Sensitivity also improves as the sensor is moved closer to the ground. It becomes poor for

the features that are located at the far end of the vertical axis (top of the sensor), i.e., for

the objects that are located at the far end of the runway. Thus, as expected, the position
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and velocity of the aircraft can be computed to a better accuracy by knowing the position

of stationary objects on the ground that are closer to the aircraft.

Table 3.2

Sensor Characteristics

Sensor type

I-1DTV

Pixel (HxV) Field of view (Hx

V) deg.

1920x1035 30x24

FLIR 512x512 28x21

PMMW 80x64 27x22

Table 3.3

Sensor Positions

(pitch = -3.0 °, Roll = 0% Cross range = 0 ft.)

Location

Threshold

Range in ft.

0.0

Altitude in ft

50.0

CAT II-DH 908.1 100.0

CAT I-DH 2816.2 200.0

Middle Marker 4500.0 288.2

1000' Altitude ' 18081.1 1000.0

Outer Marker 29040.0 1574.3
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The above results indicate that the accuracy of camera state estimation would

be no better than the GPS data unless a high resolution sensor is employed. Note

that these results do not consider potential improvements that can be obtained by

motion stereo techniques using a large number of image frames. We are presently

investigating the possibility of improving the accuracy of the computed sensor

positional parameters by extending our analysis using this method.
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As noted earlier, the PMMW images are low contrast-low resolution images.

Simple edge detection techniques on these images generate many noisy edge pixeis in

addition to those belonging to the true edges such as runways, sky etc. This problem is

alleviated by defining regions of interest on the ground plane for each feature in the model

and to perform 3D to 2D transformation. It also defines a region in the image plane where

the horizon line should occur.

w

= =

F_

4.1. Defining Regions of Interest for Runway Edges

The error in the expected location of a feature and its actual position in the image

depends on several factors, most notably the accuracy of the camera position parameters

used by the model transformation module. Furthermore, it is evident from our earlier

analysis (Fig. 3.4) that the ground area covered by a pixel is a function of the position of

the pixel in the image. Thus it is not reasonable to define the search space for each feature

as a fixed number of pixels centered around the expected location in the image plane.

Hence we define the region of interest in the 3D space and then apply transformation to

get the corresponding region of interest in the image. The extent of the search space in

the 3D space is determined by the estimated error in camera positional parameters (which

are based on GPS and on-board instrument data).
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The geometric model of the airport contains a sequence of 3D coordinates of the

vertices of the runway/taxiways, which forms a polygon with n vertices:

runway = {Pi}, i = 1, 2 ..... n,

where Pi = (Xi, Yi, zi)T is one of the vertices of the polygon. Note that Z i _ O. PiPi+l

specifies an edge of the polygon. The region of interest is def'med as a rectangle on the

ground which encloses the edge. Therefore, each edge PiPi+l of the polygon is

associated with the region of interest defined by four points b i = (Xj, Yj, Zj), j = 1..... 4,

and Zj = Z i.

The width of the region of interest is defined as a function of the width of the

runway/taxiways, w, accuracy of the GPS data, g (0_g<l), and the accuracy of the on-

board instrument, d (_<1). Note that g and d are determined by the specification and

characteristics of these instruments. This relationship is given by

0.2w
width (w, g, d) = _ (4.1)

gd

Note that the minimum width is 0.2w when g=d=l, which corresponds to _+10% potential

displacement of runway edge feature. To limit the search area from being a large fraction

of the runway width we limit the search width to 0.4w even if gd<0.5.

After def'ming the region of interest for each edge, 3D to 2D coordinate

transformation is performed using the following homogeneous equation (Smith 1990):



where

and

I - cos g cos 8

R / c°s _ sin 0 sin _ - sin _g cos
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are the perspective projection, rotation and translation transformation matrices,

respectively, and f is the focal length. After perspective projection, we need to consider

the following special cases:
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A. the region of interest degenerates to a line in the image plane because the region is

too far from the camera,

B. the region of interest in the image plane becomes very large because the edge is

very close to the camera.

For case A, a minimum width in the image plane is assigned in order to provide some

search space for the feature detector.

defined to further restrict the region.

For case B, a maximum width in image space is

In our experiment, for the aforementioned extreme

cases, the minimum and maximum width of a region of interest are set to be 10 and 20

pixels, respectively.

4.2. Defining Search Space for Horizon Line

When the vertical angular field of view is larger than 20, then a horizon line appears in

the image (Fig. 4.1). The horizon is an important clue in estimating the camera orientation

since it gives the roll angle information directly. Search space in the image plane is

defined to locate this line.

Without loss of generality, consider the situation when the aircraft is heading towards

the X axis of the world coordinate system. Assume the camera is located at point D (see

Fig. 4.1) with pitch angle 0, and zero yaw and roll angles. Point A and B are on the top

and bottom edge of the image, respectively. The horizon will then appear horizontally in
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the image plane as shown.

is given by HC = f tan O.
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The distance between this line and the center line of the image

Since in the above analysis roll angle has been assumed to be

zero, the horizon appears parallel to the horizontal axis of the image plane. For any non

zero roll angle, a simple roll lransformation on this line will give the horizon in the image.

The associated region of interest is defined to be 10 pixels centered around the expected

horizontal line in the image.

D

Z Image Plane

_cal Axis

X

fta,O

Horizon

Image Plane

___q

Fig. 4.1" Horizon line in the image.

It is possible for the projection of the region of interest onto the image plane to be

partially outside the image boundary. In such cases, wee need to clip these regions so that

the search space always remains within the confines of the image. This is done using the

polygon clip andfill algorithm (Foley et. al., 1990). The regions of interest for both the

runway and the horizon of the image sequence used in these experiment are shown in Fig.

4.2.
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Fig. 4.2: Regions of interest.

5. Runway Localization and Object Detection

5.1. Runway Localization

In this part, we search for the expected features within the region of interest defined by

previous module. This will significantly reduce the search time and also avoid spurious

responses which are likely in such a low resolution input image. An accurate localization

of the feature is necessary for estimation of motion parameters and camera pose.

A Sobel edge detector is applied to the sensor image.

scanning directions (-45 °, 0 °,

direction of the expected edge.

We then select one of the four

45 °, 90 °) which is approximately orthogonal to the

Along each scan line we locate pixels with greatest edge

strength. As the runway edge is supposed to be a straight line we fit a best line to these

pixels. We also associate a measure of confidence for these detected edges based on the

number of edge pixels detected along the line.
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5.2. Object Detection

In this part, the region inside and outside the runway/taxiways are separately checked

for the existence of any stationary or moving objects. The image has three homogeneous

regions, namely the sky, the runway/taxiways and the region outside the runway/taxiways.

Any objects on or outside the runway/taxiways are expected to have some deviation in

graylevel from their respective homogeneous background. Hence, we use histogram-

based thresholding for object detection. The thresholds which determine this deviation are

set to be different for different regions.

We generate a mask image which represents three homogeneous regions. Using

this mask image, we generate the histogram and compute its standard deviation for each

region separately (except for the sky region). The threshold value is determined as a

function of the mean and the standard deviation, and any area which has graylevel lower

than the threshold is considered as object regions. An object is assumed to have a

reasonable size. This size restriction on the object can be used to ignore spurious

responses resulting from the thresholding. Each object is then labeled based on 4-

connectivity.
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We have tested our algorithm on a test image provided by the TRW. This image was

obtained using a single pixel camera located at a fixed point in space (a camera with an

array of pixels is under development). The camera was mechanically scanned to obtain a

50x150 pixel image. This is the image shown in Fig. 1.1. We were also provided with the

model of the runway giving the 3D world coordinates of the runway corners, locations of

the buildings etc. Using these data and the single image, we created a sequence of 30

frames to simulate the images from a moving camera. Frames 1 (original), 8, 16, and 24

from this sequence are shown in Fig. 6. l(a). Edge enhanced images corresponding to

these frames are shown in Fig. 6.1 (b). The regions of interest defined on these frames are

shown in Fig. 6.1 (c). Delineated features superimposed on the images are shown in Fig.

6. l(d). Although all the edges are detected accurately in the example, it is likely that one

or more edges of a polygon are not detected. To handle such situations we associate a

degree of importance for each edge. For example, runway edges which are closer to the

camera must be detected in the image whereas those corresponding to the far end of the

runway are usually very short and may or may not be detected. And overall confidence

measure is associated with each detected region.

Objects detected on the runway in Frame 1 and those outside the runway are shown in

Fig. 6.2. Warning signals are generated for each object on or near runway. Algorithms to
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track these in successive flames and estimate camera state using motion stereo are under

development.
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Fig. 6.1(b) The edge images
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Fig. 6.1 (c) Regions of interest
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7. Future Work and Conclusions

In this part of the report, we have described a vision-based system to assist pilots

during landing under restricted visibility conditions. The images obtained by a passive

sensor is processed to detect major regions such as runways and objects inside and outside

these regions. The image resolution is very poor, however, additional information in the

form of airport geometric model, and camera position parameters are available to guide

the segmentation algorithms. Objects are detected in each of these regions using

thresholds computed separately for each region. Our results show that the model-based

feature detection approach is quite accurate and the homogeneity assumption on regions
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for object detection is reasonable.The successof this model-based approach dearly

depends upon the accuracy of the camera position parameters used to define search

regions in the image. One of the methods for updating camera position information is

triangulation using known objects. We have derived the accuracy of such an update as a

function of camera characteristics and image parameters.

At this stage, our system is able to detect the runway/taxiways and the objects

inside and outside the nmway/taxiways in each frame and to report their positions in the

image. Since we have a moving camera, moving object situation, even the stationary

objects appear to be moving in the image. Work is in progress to estimate the egomotion

of the camera, to distinguish moving objects from stationary ones and to estimate the

velocities of the moving objects. There is also potential to obtain more accurate camera

state estimation using motion stereo from image sequences compared to using GPS data

alone.

w
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Abstract

A computer vision system to assist pilots during low-altitude flight and landing

maneuvers has been developed in this research study. During this critical section of flight,

a system which can recognize the runway in the image and detect various objects on the

ground will be very useful to enhance the safety of navigation. Such tasks can generally

be automated by computer vision-based methods, which provide the ability for object

recognition and obstacle detection. In this work several algorithms have been developed

to accomplish important tasks such as runway recognition, obstacle detection etc. These

algorithms were tested on image sequences captured by a single camera mounted on an

aircraft or a rotorcraft.

This research makes use of a priori knowledge about the runway geometric model

and the aircraft/rotorcraft motion information to improve the performance of dynamic

scene analysis. First, The system recognizes the runway in the images by using the runway

model and the camera position information. An outline of the detected runway can thus

be projected onto the image, which serves as a verification that the aircraft is heading in

the correct direction. Creating such graphics also renders a better visualization for the

pilots. Second, stationry objects in the image are detected and thier 3D positions are

estimated. By knowing the static environment, the system is able not only to verify

expected objects in the scene, such as the runway/taxiway, equipment, and the buildings,

but also to find unexpected objects near the flightpath. The aircraft/rotorcraft can use

such information to modify the nominal trajectory and thus avoid possible collision.
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Because of the heavy workload demands that are imposed upon pilots and crew

during low-altitude flight, there is a significant need for an automatic obstacle detection

system onboard an aircraft or a rotorcraft. Such a system can relieve the pilots from

tiring, monotonous flight control tasks so that they can concentrate more on flight

planning. In addition, despite the enforced control of airport ground personnel and

vehicles, runway incursion is still a serious problem which jeopardizes the safety of aircraft

landing. A computer vision system would thus provide a general approach to assist the

pilots in recognizing objects and detecting obstacles. There is also the same need for a

detection system for high performance unmanned vehicles. For example, a spacecraft

exploring a remote planet needs to have a vision system in order to land on the rough

terrain of the planet. Helicopters carrying cameras would be useful for inspecting

contaminated or dangerous areas. Although such vision-based navigation is very

important, there has been very little work done to develop such a system, mainly because

of the difficulty in obtaining sufficient test data and the immaturity of vision algorithms.

Since it is obvious that vision-based autonomous navigation will become more and more

important in the future, we feel it is necessary to perform research on this topic and

develop techniques which would benefit future applications. In this research, the vision

system is designed mainly for low-altitude flying aircraft or rotorcraft. Therefore, it is, in
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fact, a general case of other types of navigation, such as Autonomous Land Vehicles

(ALV) and robotics.
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Obstacle detection for a moving observer has been an active research topic for years.

A critical issue is to estimate the range or the position of an obstacle relative to the

moving observer. This technique has been extensively studied in ALV and other ground-

based robotic applications, where road following is the key guidance function. However,

in the case of low-altitude flying rotorcraft, the ability to maneuver around obstacles is the

challenge for guidance systems. The rotorcraft flight at low-altitude has several distinct

characteristics as opposed to the ALV case: (1) due to the curvilinear motion of the

rotorcraft, a large class of passive ranging algorithms designed for linear motion are not

directly applicable; (2) the outdoor scene is generally not known in advance; hence model-

based algorithms, such as the road following method, will not be possible; (3) the sensor

motion parameters are available from the Inertial Navigation System (INS). Also, this

research differs from general motion analysis methods in that the rotorcraft's motion

parameters are not estimated. They are assumed to be computed using an onboard

navigation system. The main idea is to demonstrate that accurate position estimates and

moving object tracking are achievable with the knowledge of camera motion parameters.



L

rqf

V

v

u
w

1.1. Objectives

39

Among the four objectives, two of which are addressed in this part of the report,

each addresses important and difficult issues in the current research trends as described in

the following. Locating the runway presents a problem of model-based recognition.

Hypothesis of the runway is first generated on the image plane by def'ming the regions of

interest on the image plane. And then the existence of the runway is verified by feature

extraction and model matching. After this stage, the image can be roughly divided into

several regions, such as the sky, the runway/taxiways, and other areas. Different image

analysis techniques can thus be performed on each area. This heterogeneous processing is

This research is concerned with the problem of estimating and visualizing the

structure of a stationary scene and the velocities of the independently moving objects as

seen by a moving observer. There are four main objectives: first, to recognize the runway

in the image from a priori knowledge of the runway geometric model and camera motion;

second, to detect moving objects in the images; third, to estimate the velocities of the

moving objects, and finally, to estimate the 3D positions of the stationary objects. The

key to meeting these objectives is the information of the camera motion. As modern

aircraft are usually equipped with onboard inertial navigation systems, the aircraft/camera

state (i.e., position and orientation) is continuously available. With the help of the camera

state information, the runway in the image can be reliably recognized and the quality of the

motion analysis will be significantly improved.
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important for a real-timesystemin that computationally expensive processing on the

whole image can be avoided.
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As is well known, moving object detection using visual information alone is quite

difficult, particularly when the observer is also moving. The reason is that different

motion scenarios among the environment, objects, and the camera may result in a very

similar image sequence. This ambiguity can be resolved by the knowledge of the camera

motion information. For stationary object position estimation, also known as structure

from motion techniques, most algorithms suffer from the noise caused by image

digitization and the algorithms of feature extraction and feature matching. A method is

presented to improve the performance of feature matching and hence to obtain accurate

position estimates.

This research presents rather challenging problems in computer vision. Related

research topics include image processing, model-based recognition, estimation theory, and

dynamic scene analysis. The algorithms developed will be tested on three sets of image

sequences. One of them, namely the runway sequence, was obtained by digitizing a video

tape provided by NASA Langley Research Center, Hampton, Virginia. The tape was

recorded during the landing of an aircraft. The other two, namely the line and the arc

sequences of the helicopter images, were provided by NASA Ames Research Center,

Moffett Field, California. These two sequences were captured from a helicopter
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conducting low-altitude flight.

later.
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The nature of these sequences will be further explained

1.2. Organization

In this section a brief introduction to the problem addressed in this resarch has been

provided, followed by the main objectives. Section 2 gives an overview of the vision

analysis system. In that section, the coordinate systems of the imaging system are first

defined. This includes the relationships between the coordinate systems and the camera

motion parameters. A system block diagram is then shown which describes the functions

of various modules of the vision system and the interaction among them. And finally, the

first stage, i.e., the calibration stage of the system is described.

A model-based method to recognize the runway as the aircraft approaches the

airport is described in section 3. With the availability of the runway model and the earnera

pose, the runway in the image can be quickly and reliably recognized. The success of

quick recognition relies on the fact that blind tree search can be totally avoided if the

approximate camera pose is known. The quality of recognition, however, depends upon

the accuracy of camera pose information and the line detection algorithm.

The method to estimate the positions of stationary objects is described in section 3.

This technique belongs to the class of structure from motion methods. Such methods

generally suffer from noise caused by image digitization, feature detection algorithms, and
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feature tracking/matching algorithms. A technique utilizing the epipolar lines is presented

to significantly improve the performance of feature tracking, and thus to obtain accurate

position estimates. Section 4 gives the summary and conclusions of this part of

theresearch work. Future research directions are also addressed.

2. system overview

Piloting an aircraft is a rather demanding task and engineers have long been

considering ways to alleviate some of the pilot's work by using partial automation.

Automatic control could free the pilot from tiring, monotonous control tasks. Instead, the

pilot could concentrate on mission planning and supervision, adjusting autopilot

parameters now and then while taking over control only when more complicated

navigation is needed. In addition, during the critical period of take-off and landing there is

a need to have a system which can assist the pilot in detecting the runway and potential

hazards more accurately and reliably. Although remote piloting can satisfy this need, it

requires a steady high bandwidth data link which is extremely difficult to maintain,

especially in a hostile environment. Also, remote piloting is not able to alert the pilot of

any unexpected obstacles that enter the runway area. The key to the success of human

piloting relies on the human vision system, which provides the pilot with the most useful

information, especially for interactions with the environment close to the ground surface.

A computer vision system could make the informaiton more complete and accurate,

however, and therefore make flight safer. The imaging system is depicted in Fig. 2.1,
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Fig. 2.1: Geometry for the imaging system.

where the helicopter is equipped with the Inertial Navigation System which, in

cooperation with the ground equipment, constantly provides the position and orientation

of the helicopter. A camera is mounted in front of the helicopter to capture the images.

Also shown in the figure are the relationships among different coordinate systems which

are described in the following sections.
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2.1. Coordinate Systems

As shown in Fig. 2.1, the coordinate systems of the vision system include the Earth

frame, the helicopter body frame, the sensor frame, the image plane axes, and the pixel

axes (Smith, 1990):

1. Earth (world) frame--The Earth frame is rigidly affixed to the Earth with three

axes, Xe, Ye, and Z e. The origin of the Earth frame is an arbitrarily selected point

on a runway at the test flight facility.

2. Helicopter body frame_ the helicopter body axes frame (or body frame) is

assumed to be fixed relative to the helicopter with the X b axis pointing forward out

the helicopter nose, the Yb axis pointing out the right hand side of the helicopter,

and the Z b axis pointing downward relative to the helicopter's geometry. The

origin of the body frame is the helicopters nominal center of gravity.

3. Sensor frame _ The sensor frame is rigidly attached to the camera and originates at

the lens focal point. The Ys and Z s axes are parallel to the image plane axes u and

v, respectively. The X s axis points along the optical axis. The camera is rigidly

mounted to the helicopter.

4. Image Plane Axes _ The image plane axes are oriented along the rows and

columns of the sensor array. The it axis points to the right along rows and the v

axis points downward along the columns.
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5. Pixel axes- The pixel axes, n u and nv, are attached to the camera's image plane

and point along the rows and columns of the sensor array as do the image plane

axes; however, the pixel axes originate at the upper left-hand corner of the sensor

array rather than at the image center. The upper left-hand pixel has coordinate

(0, 0).

2.1.1. Coordinate Transformation

The coordinate transformation from one frame to another can be expressed by

r _-R(v,0,,)|r- rt /
Z" [_Z-Zt j

(2.1)

where [Xt, Yt, Zt] T is the translation matrix and R is the rotation matrix. The rotation

matrix is defined in terms of Euler angles. The Euler angles are yaw angle _, pitch angle

0, and roll angle _b. The rotation sequence is R_ about Z, R 0 about Y, and Rt_ about X

axis, where all rotations are positive in the fight-hand sense. The rotation matrix resulting

from this sequence of rotation is given below:

%I

I c_cO

R( v, O, tb) = R, RoR v = ]cvsOs , - sagerb

LcwOc,+

where c is cosine and s is sine functions, respectively.

s_c0 -sO l
svsOs_ + cvc_ cOs_

svsOc_ - cvs_ cOab

(2.2)
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The rotation matrix premultiplies a column vector to express that vector in another

coordinate frame. The rotation matrices from the Earth flame to the body frame, from the

body frame to the sensor frame, and from the Earth frame to the sensor frame are given by

the following equations:

Rbe = R(Wb e ,Obe ,t_be )

Rsb = R(Vs b ,Osb ,i_sb )

Rse = RsbRbe = R(Wse, Ose ,t_se )

(2.3)

where Rbe is the rotation matrix from the Earth frame to the body frame, _be is the yaw

angle from the Earth frame to the body frame, etc.

z

2.1.2. Perspective Projection Equations

The perspective projection equation which map points from the sensor axes system

to a pixel location in the image array are

nu = nuo + ARfe(y s/x s)

nv = nvo + fe (Zs / Xs) (2.4)

where (x s, Ys, Zs) is the location of a point in sensor axes and (nu, nv) is its projected

location on the image plane, (nuO , nvO ) is the image center, fe is the effective focal length,

and AR is the aspect ratio defined as AR = 5v[Su. 5u and 8v are the horizontal and vertical

pixel spacing, respectively.
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2.2. System Description

Fig. 2.2 gives an overview of the vision system. The first module, calibration,

performs the calibration task. This is done only on the runway sequence as the field of

view of the camera used is very large, producing distorted images. For the helicopter

sequences, the images are well calibrated. The calibration method will be described in the

following section. After this stage, the corrected images are fed to other modules. The

runway in the images are first detected by the runway recognition module. This module

takes the runway geometric model and the camera state information as inputs to define the

regions of interest on the image plane. The runway model contains the 3D position

information of the runway features. After defining the regions of interest, an hypothesis of

the runway can be made in the image and further verified by model-based object

recognition. An outhne of the runway can be superimposed on the cockpit screen which

provides better visualization for the pilots. Detailed algorithms for runway recognition

will be described in section 2.3.

The purpose of the motion detection module is to detect and segment independently

moving objects in the image. An advantage of separating the moving objects is that

different analysis techniques can be applied on different portions of the image.

Computationally expensive algorithms applying on the whole image such as moving object

tracking can be avoided. The module also takes the camera state information as inputs.

With such information, optical flow due to independently moving objects can be identified
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because such flow usually violates a certain constraint. A method proposed by Lucas and

Kanade (1981) is first applied to compute the optical flow in the image, followed by

constraint ray filtering (Nelson, 1991) to detect optical flow produced by moving objects.

After this stage, moving objects in the image can be segmented from other stationary

objects. The segmented image portions will be fed into the tracking module and the rest

of the image will be the input of the position estimation module.

_J

L_

Image
Sequence

Calibration

b

Tracking(Moving
Objects)

Position
Estimation
(Stationary

Runway Objects)
Model

Fig. 2.2: System block diagram.

Velocities

t l_,oc.ations
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In the tracking module, moving objects in the scene are tracked in the image

sequence. The tracking is done by matching the 2D shape of an object in the image. The

shape of the object is created directly from the image; hence, no a priori information of the

object is required. To estimate the object motion, the extended Kalman filtering technique

is used. Using the Kalman filter, the estimation can be performed recursively and the state

covariance matrix indicates the goodness of the estimates. The outputs of this module are

the 3D positions and the velocities of the moving objects.

L_

In the position estimation module, an incremental estimation method is used to

estimate the 3D positions of the stationary objects. Since the motion of the camera is

known, a pencil of epipolar planes and epipolar lines (Baker & Bolles, 1989) can be

defined on the image plane. As is well known, the motion of image features, i.e., the

optical flow, will follow the directions of the epipolar lines. This provides a strong

constraint, namely the epipolar constraint, in feature tracking on the image plane. It will

be shown in section 4 that such successful tracking makes the estimates of object positions

very accurate. The outputs of this module are the 3D position estimates of stationary

objects.
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2.3. Image Sequences for Experiments

The algorithms developed in the research work were tested on three sequences of

images. The first is the runway image sequence digitized from a video tape provided by

NASA Langley Research Center, Hampton, Virginia. The other two, i.e., the line and the

arc sequences of the helicopter images were provided by NASA Ames Research Center,

Moffett Field, California. The image sequences are described as follows.

w

2.3.1. Runway Image Sequence and Calibration

The runway images are obtained by digitizing a video tape recorded when an aircraft

approaches the runway for landing. The image resolution is 480x640 and the frame

grabbing rate is 2 frames/see. The information of the aircraft body positions and

orientations are also provided, together with the camera attitude relative to the aircraft

body. Fig. 2.3 shows a number of frames of the sequence. Section 3 provides a detailed

description about the characteristics of the image sequence. Due to the wide field of view

of the camera (8 lx64 degrees), the images exhibit considerable distortion called the radial

lens distortion. This is obvious by noticing that the horizon line and the runway edges in

the image are curved. Line detection in such images may produce noisy outputs and

camera calibration is thus necessary. The calibration program developed by Sommer

(1994) is used to correct the images. In the calibration procedures, only the internal
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parameters such as the effective focal length and the distortion coefficient of the camera

need to be estimated if the radial lens distortion is assumed.
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To estimate the internal parameters of the camera, a projection model has to be

established. If a scene point P is known at location (Xc, Yc, Zc) relative to the camera

coordinate system, the image plane is parallel to the camera's YZ plane, and the image

axes y and z are parallel to camera axes Y and Z, respectively, then the perspective

projection equations can be written as (see Fig. 2.4):

f f

Yu=Yc-'_c + YO

=Z f+
Zu c _ zo

(2.5)

where (Yu, Zu) is the undistorted image position, f is the focal length, and (Y0, z0) is the

image center. The radial lens distortion is modeled as

Yd =Yu/(1 +kr 2)
Zd = Zu/(l + kr2 ) (2.6)

where (Yd, Zd) is the distorted image position, k is the distortion coefficient, and

r 2 = y2 + z 2. In the runway images, a set of scene points Pi = (Xci,Yci,Zci), i= 1..... n,

is available from the specifications of the locations of the painted markings, and their

corresponding image positions (Ydi,Zdi) can be measured manually. Thus a set of

simultaneous nonlinear equations with unknowns f and k can be created. The equations

are solved by using the Marquadt method (Press et al., 1992). After solving forf and k,



the image is corrected by the inverse function of Eq. (2.6).

image and the corrected image.
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Fig. 2.5 shows the original
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2.3.2. Helicopter Image Sequences

There are two sequences of helicopter image sequences, namely the line and the

arc sequences, which were provided by NASA Ames Research Center, Moffett,

California. Each sequence consists of 90 image frames with size 512x512 pixels and each

frame contains a header information which records the helicopter body and camera

positions and orientations, body and camera motion parameters, camera parameters, etc.

Time stamps are projected directly on the image frames. Table 2.1 gives an example of

the image header information. Fig. 2.6 shows several frames of the two sequences. For

the line sequence, the helicopter's flightpath is approximately a straight line and there are

five trucks in the scene during the whole sequence. For the arc sequence, the helicopter is

making a turning flight and Truck 1 is not visible in all frames. The trucks are labeled in

terms of their range (X) values. Thus, Truck 1 is the nearest and Truck 5 is the farthest

relative to the camera. Ground truths for the locations of each trucks are also provided, as

listed in Table 2.2.

_2
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Table 2.1: Sample Image Header Data.

Measurement Name

SENSOR_POS1TION_XWORLD
SENSOR_POS1TIONYWORLD
SENSOR_POS1TIONZ_WORLD
BODY_POS1TION_X_WOR.LD
BODY_POSITIONYWORLD
BODY_POSITIONZWORLD

SENSOR_VELOCiTY_X_SENSOR
SENS OR_VELOCrrY_Y_SENSOR
SENSOR_VELOCTI'Y Z_SENSOR

SENSOR_ANGULAR_RATEX_SENSOR
SENSOR_ANGULAR_RATE_Y_SENSOR
SENSOR_ANGULARRATE_ZSENSOR
BODY_VELOC1TY_XBODY

BODY_VELOCITY_Y_BODY
BODY_VELOC1TY_Z_BODY

BODY_ANGULAR_RATEXBODY
BODY_ANGULARRATE_YBODY
BODY_ANGULAR_RATEZ_BODY
SENSOR_POSITION_X_BODY
SENSOR_POS1TIONY_BODY
SENSOR_POS1TION_Z_BODY
ANGLE_PSI_WORLD_TO_BODY
ANGLE_TI-IETA_WORLD_TO_BODY
ANGLE_PI-II WORLD_TQBOD Y
ANGLE_PSI_BODY_TO_SENSOR
ANGLE_THErA_BODY TO_SENSOR
ANGLE_PI-II_BODY TQSENSOR
ANGLE_PSI_WORLD_TO_SENSOR
ANGLE_THEFA_WORLD_TO_SENSOR
ANGLE_PHI_WORLD_TO_SENSOR
ASPECT_RATIO
FOCAL_LENGTH
U_CEN'IER
V_CEN'IER

STAMP_TIME
GLOBAL_TIME
DELTA_TIME
FRAMEID

Value Accuracy

734.218469
520.450862
-10.706197

757.336792 2.0
517.029711 2.0
-16.165920 2.0
30.175145
0.186516
-1.921346
0.023833
0.011290
0.012405

30.052409 0.3
0.134803 0.3
2.572170 0.6

0.021827 0.0045
0.011502 0.0045
0.015511 0.0025
22.950401 0.042
-1.043942 0.017
6.939767 0.017
3.034820 0.0123
0.064561 0.0021
-0.015253 0.0042

0.005538 0.0035
-0.139288 0.0035
-0.007376 0.0017
3.042443
-0.074628
-0.022281

1.005400 0.001
621.399231 2.6
253.255096 2.4
238.301407 1.6
236:22:31:31.061
81091.061000
0.033333
0

Units

feet

feet
feet
feet
feet
feet

feet/see
feet/sec
feet/sec
rad/sec
rad/sec
rad/sec
feet/sec
feet/see
feet/sec

rad/sec
rad/sec

rad/sec
feet
feet
feet

radians
radians
radians
radians
radians
radians
radiaas
radians
radians
non-dimensional
pixels
pixels
pixels
seconds
seconds
seconds
non-dlmensional
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Fig. 2.6:

Frame 80

The line (left) and the arc (right) sequences of the helicopter images.
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Table 2.2: The ground truths of the locations of the trucks in the scene.

Truck

1 (north east ground level)

1 (south east top corner)

2 (north east ground level)

2 (south east top corner)

3 (north east ground level)

3 (south east top corner)

4 (north east ground level)

4 (south east top corner)

5 (north east ground level)

5 (south east top corner)

X y Z

479.3 470.6 4.9

461.5 472.3 -3.0

368.7 614.1 4.5

348.7 614.5 -3.1

231.2 490.2 3.9

209.0 491.9 -0.2

118.3 633.1 3.6

98.6 634.8 -7.4

-17.7 510.6 3.0

-37.6 511.5 -7.7
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When a pilot is trying to land an aircraft, the first thing he/she needs to do is to

recognize and localize the runway. From the view point of the vision system, the pilot has

an image on his retina, which corresponds to the sensor data. He/she also has in mind

what the runway should look like, which corresponds to the object model. The task of the

vision system is then to find occurrences of the object in the sensor data. In order to

recognize an occurrence of an object in a scene, we must have some notion of what the

object looks like. This information is usually provided by a geometric model of the object

stored in the computer. This object model usually is a set of model features which the

object is composed of and a set of relationships or constraints among the features. Thus,

the recognition process is essentially a matching problem where we seek to find the best

correspondence between some set of sensor features and the same types of known model

features. Hence, this type of recognition strategy is called model-based recognition. A

wide range of applications are suitable for model-based recognition, such as object

manipulation, navigation, and inspection. A more complete discussion of the strategies

can be found in the review papers by Binford (1982), Besl and Jain (1985), Brady et al.

(1989), and Chin and Dyer (1986).

For the application of runway recognition, the only object to be recognized is the

runway and there should be only one instance of the runway in the image. This is different

from most other object recognition systems, where usually a class of different objects is



w

s 7

t_

E_
W

let"
= =
Ira@

r_

59

stored in the database, and a number of instances of objects may exist in the image. In

such a case, the recognition process has to not only fred all occurrences of objects but also

distinguish among different objects. In this chapter, several aspects of the subject of the

runway recognition are addressed, including the following:

• what model features are used to represent the object?

• what image features are used to recognize the object?

• what methods are used to establish a correspondence between image features and

model features of the object?

• how do we deduce the existence of an object from image features?

i The answers to these questions will be provided in the following sections.

3.1. Runway Model and Line Detection

The regulations set by the Federal Aviation Administration specify various runway

specifications (Advisory Circular, 1980) including the geometry, pavement, painted

markings, etc. Fig. 3.1 shows the particular markings at the beginning of a runway, and

Fig. 3.2 shows what the markings look like in the input image. These markings are

painted white and appear prominently when seen from an approaching aircraft. Hence

they are considered as important features for runway recognition. Among the features,
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the eight short stripes at the beginning of the runway and the two side stripes are more

important since they are more easily seen and are relatively easy to detect in the image.

This can be seen from Fig. 3.1 where the edge image clearly shows the edges of these

features. We thus define a number of edges of the markings as the model features to be

matched in the image. A runway model is defined as a set of model features:

runway = {Mi} ' i = 1.... m, (3.1)

where Mi=(MIi,M?) is one of the edges of the marking with Ml=(xli,Yil,zli) and

M? =(X?,Yi2,Z?) specifying, respectively, the 3D position of the two end points of the

edge and m is the number of total model features selected. All positions are relative to an

arbitrary reference point in the airport. Fig. 3.4 shows the selected 36 features as they are

more likely to appear in the image.

To perform runway recognition, three stages of processing are conducted, namely,

edge detection, line detection, and model-based recognition. Canny edge detector (Canny,

1986) is fa'st applied to the image. The result is shown in Fig. 3.3. To detect straight

lines given the edge image, the software package Object Recognition Toolkit (ORT)

developed by Etemadi et al. (Etemadi, 1993; Etemadi et al., 1993) at the University of

Surrey, England, is used. This software takes an edge image as the input and reports the

detected straight line segments, circular arcs, and various junction between lines, such as

the T and Y junctions. In our application, we ae interested in straight line segments and
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Fig. 3.1: The painted markings of a runway.

Fig. 3.2: The runway image (Frame 60).
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Fig. 3.3: The edge image.
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Fig. 3.4: Selected runway features.
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these line segments are the image features. Each line segment is represented by several

parameters including the two end points, mid point, length, orientation, the variance in

length and in orientation, etc. Fig. 3.5 shows the detected line segments. The next step is

to perform the runway recognition.

Fig. 3.5: The detected line segments.

3.2. Model-Based Runway Recognition

In the model-based object recognition, the stored geometric model is matched

against features extracted from an image. An interpretation of an image consists of a set

of model and image feature pairs so that there exists a particular type of transformation
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that maps each model feature onto its corresponding image feature. Thus, the recognition

process can be considered as a sequential matching process where the image features are

matched against the model features. An image feature is said to match a model feature if

it satisfies certain constraints defined together with the model features. For line segments,

the constraints may be the length, the orientation, and the geometric relationships with

other features. Another important product of the matching process is the transformation

matrix from model to image coordinate flames.

orientation of the object relative to the camera.

This matrix determines the location and

Since the search space is usually far too

large for the approach to be practical, especially when occlusions, noise, and spurious data

are present, efforts have made been to reduce the space.

have been developed, including geometric constraints

Several matching techniques

(Grimson, 1990), alignment

(Ayache & Faugeras, 1986; Dhome et al., 1989; Huttenlocher & Ullman, 1987),

geometric hashing (Lamdan et al., 1988; Lamdan & Wolfson 1988; Wolfson, 1990),

generalized Hough transform (Silbergberg et al., 1984; Thompson & Mundy, 1987;

Turney et al., 1985), etc.

For the runway recognition problem, several aspects that differ from ordinary

recognition problems are noticeable. First, the object to be matched has a simple

geometric shape which consists of a group of approximately coplanar straight lines.

Second, with the knowledge of the camera pose, the approximate two-dimensional (2D)

projection of the object on the image is predictable, making the computation for the



m

v

transformation matrix unnecessary.

complexity of the matching process.
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These characteristics considerably reduce the

Third, there is little occlusion problem. The only

problems to deal with are the missing features and spurious data. This is obvious from

Fig. 3.5, where several model features are missed by the line detector and there are eases

where multiple iine reports correspond to a single model feature. And finally, the scaling

problem has to be explicitly dealt with. As the aircraft may be very far away from the

runway, some small features may not be visible at all in the image. Therefore, special care

should be taken to rule out the model features which may not be easy to detect in the

image. The next section describes the runway recognition method.

3.2.1. Regions of Interest

For an aircraft equipped with Inertial Navigation Systems, the information about the

aircraft/camera state is continuously available as the aircraft moves. This information is

very important to reduce the complexity of the recognition algorithm and the matching

result is significantly improved as well. If the camera state information is exact, the 2D

shape and the 2D model features of the runway are readily obtainable simply by

performing 3D to 2D transformation and projection using the known transformation

matrix. Therefore, the 3D matching problem becomes a 2D problem--just to match the

2D shape of the object using the sensor data. Since the camera state information is

inexact, a method based on defining the regions of interest (ROIs) on the image plane is
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developed. An ROI is an area in the image where a certain feature is expected to appear

given a range of different camera states. Fig. 3.6 shows an ROI for a model feature. The

more accurate the camera state information, the smaller the area. By defining such an

area, searching for a match of a model feature in the image is performed only within that

area and nowhere else. The use of the ROI is a very strong constraint which reduces the

search space significantly. The geometric constraints for a single feature are also defined

by an ROI. Fig. 3.7 shows the constraints for matching a model feature, where the 2D

model feature has a length of d and an orientation of a. The candidate image features

should have a length not exceeding d and an orientation different from a by no more than

15. 15 is the angle between the two lines joining, respectively, the two pairs of opposite

vertices of the ROI. Only those image features satisfying these two constraints can be

considered as potential matches. Def'ming the ROI also implicitly preserves the geometric

properties or constraints among the features since the set of ROIs clearly maintains the

original 2D shape of the object. As can be seen, the ROIs not only provide geometric

constraints in matching, but also speeds up the matching process. This is essential in

designing an efficient and reliable matching method. In our previous work, using ROIs

has proved that the runway can be reliably detected in a sequence of Passive Millimeter-

Wave images (Tang et ai., 1993, 1994).

To define the ROIs in the image, the camera state information is used to determine

the extent of the ROIs. The camera state relative to the world coordinate frame is
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represented by six parameters (Xc, Yc, Zc, gt, 0, _) described in section 2.2. For the

particular INS used in the experiments, the inaccuracies are (Xc+2.0 , yc+_2.0, Zc+2.0) for

the position and (_"0.0158, 0-+0.0056, d__+0.0059) for the orientation, where the unit of

the position is feet and that of the orientation is radians (Smith, 1990). If the two extreme ,

values are considered for each variable, there can be 64 (2 6) different camera states.

Accordingly, each model feature can have 64 positions in the image with one position

corresponding to a particular camera state. The situation is described in Fig. 3.8, where

the two end points of a model feature each have 64 possible positions in the image. If we

def'me a bounding box which encloses all these points, we have def'med a ROI for the

feature. As a result, an ROI fully specifies the possible locations and orientations of the

feature to appear in the image, and the feature matcher seeks to find the best matching

image feature only within the corresponding ROI for that model feature. A significant

amount of computation can thus be saved, and the matching is more accurate.
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Fig. 3.8: The ROI is defined as a bounding box which encloses all possible
end points of the feature.

The horizon line is an important clue in verifying the camera orientation since it gives

the roll angle information directly. In addition, the horizon line, if appearing in the image,

is very salient and is relatively easy to detect. Hence, a ROI is also defined for the horizon

line. When the vertical angular field of view is larger than 20, a horizon line will appear in

the image (see Fig. 3.9). Without loss of generality, consider the situation when the

aircraft is heading towards the X axis of the world coordinate system. Assume the camera

is located at point D (see Fig. 3.9) with pitch angle 0, and zero yaw and roll angles.

Points A and B are the top and bottom edge of the image, respectively. The horizon will

then appear horizontally in the image plane as shown. The distance between this line and

the center line of the image is given by _ = f tan 0. Since in the above analysis, roll

w
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angle has been assumed to be zero, the horizon appears parallel to the horizontal axis of

the image plane. For any non-zero roll angle, a simple rotation of this line will give the

horizon in the image. The associated ROI is defined to be 20 pixels wide (on the 240x320

image) centered around the expected horizon line in the image. Fig. 3.10 shows all the

ROIs defined for the horizon line and the runway model features given a camera state and

its inaccuracies.
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Fig. 3.9: Horizon line in the image (zero roll angle).
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3.2.2. Creating the 2D Model and the Regions of Interest

Before conducting the matching process, we have to obtain the 2D image version of

the 3D object. Each 3D end point of a model feature is f'u'st transformed to obtain 64

positions on the image plane by using the known 64 transformation matrices mentioned

earlier. And then, a bounding box can be computed on the image plane which encloses all

the 128 points (two end points) for a 2D model feature. Polygon and line clipping (Foley

et al., 1990) is necessary if only a part of the bounding box or the model feature is inside

the image. Now a set of ROIs is created for the 2D model features. Next, for each 2D

feature, which may have been clipped, compute its length in the image. The summation of
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all the feature lengths is also computed which gives the total image length of the 2D

model. The total length is used for measuring the goodness of the matching result to be

described later. The feature list is then sorted according to the feature length. Having an

ordered set of features is advantageous because longer features tend to be detected more

likely and reliably, so they should have higher priority to be matched fu'st. As the runway

may appear different depending on the location and orientation of the camera, more work

needs to be done to discard non-detectable 2D model features. For example, the 8 stripes

will appear too small to be detected if the aircraft is too far away from the runway. Also,

if the aircraft is not heading in the same direction as the runway direction, two adjacent

features may appear so close that they will merge into one or they may not be visible at all.

Therefore, only those features with a length greater than a certain threshold are retained.

Features with a small distance to its neighbors are discarded also. After all these

processes, we have an ordered 2D model feature list; each feature is associated with an

ROI. And the geometric constraints, i.e., the length and the orientation constraints, can be

computed for each ROI.

3.2.3. Feature Matching

In matching a model feature, some factors have to be taken into consideration. First,

usually there are several image features in the ROI (see Fig. 3.11). Some image features

may be missed or broken by the detector and there may be multiple reports within an ROI
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due to either noise or overlapping of ROIs. If ROIs overlap, some image features in the

ROI would actually correspond to other model features. Second, the line segments may

be broken. Hence, several collinear image features should match a single model feature

(see Fig. 3.12). With these observations, the following four-step algorithm is designed to

perform the matching task for each model feature sequentially.

= =

w

L

= :

Step 1: Extract all the image features that fall completely within the defined ROI. That is,

both end points of an image feature have to be inside the ROI in order to satisfy

the length constraint. However, small image features (< 3 pixels in length) are not

included since they tend to be due to noise.

Step 2: Discard those image features

constraint.

whose orientations do not satisfy the orientation

Step 3:

Step 4:

Group features if they are coUinear. This is to join the broken but collinear image

features. The total length of the eollinear line segments is then computed.

Sort the feature groups according to the total length and choose the group with

the greatest length as the best match. Since the model features have been sorted,

the group with the greatest total length should be assigned first.
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Fig. 3.12: Two collinear lines detected from image features which also
satisfy the geometric constraints.



- w

w

i

m

= =

W

75

As mentioned before, the geometric constraints (relationships) among model

features are implied by the definition of ROI since the set of ROIs still preserves the 2D

shape of the object model. Therefore, matching against model features can be done

sequentially without checking with other already matched results. This can save a

tremendous amount of computation time.

3.3. Measure of Goodness

A measure of the goodness of matching is computed to evaluate the result of runway

recognition. Let the length of the model feature ft" be Di, the total length of the model be

i
L, the image features matched to m i be {sj }j=l...ni. and the length of each s} be e}. We

have

m ni

L=__D i and
i=1 j-_l

(3.2)

The measure of goodness _ is defined as

m m d 1 m ni

-i__lDi. i _ _ _-,_-,e i_ : Ewi .ri _ -- --_ii ---£1_ z_, j.
i-_l L i=lj=l

(3.3)

where w i (=DilL) represents the weight of the model feature fi in the object model, i.e.,

the importance of the detection of this model feature to the complete detection of the
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It is measured as the ratio of the length of the model feature to the total model

Features with greater length are more important to be detected in order to

recognize the whole object. Hence, they should have more weight in the goodness

measure. Another measure, r i (=di/Di) ' represents the result of matching for the model

featuref i, i.e., how much of the model feature has been detected. It is defined as the ratio

of the total length of the matched image features to the expected length of the model

feature.

As a result, the measure of goodness f_ is the ratio of the total length of all matched

image features to the total length of the object model. If f2 is larger than a certain

threshold, the object is recognized in the image. In the experiments, f2 is set to 0.6. Fig.

3.13 shows the recognition results of a number of runway image frames.

w
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Fig. 3.13: The detected horizon and runway in Frames 58 to 61 (a to d).
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(c) Frame 60 (f_=78%)

(d) Frame 61 (_=82%)

Fig. 3.13: (continued)
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3.4. Analysis

The algorithm described in this chapter is mainly designed for model-based

recognition with the knowledge of approximate camera location and orientation. Features

are defined as line segments. Hence, this algorithm depends on the accuracy of the camera

state information and the quality of line detection. Loosely speaking, the computation

complexity of the algorithm is O(mn), where m is the number of model features and n is

the number of image features. Strictly speaking, however, since considerable heuristics

are used to rule out image features which cannot possibly be matching candidates, the

computation complexity is really O(m). That is, by defining the ROI and using the

geometric constraints, the number of match candidates to be processed for a single model

feature is almost a constant in the order of 10 or less depending upon the accuracy of the

camera state information. Fast recognition is thus achievable. Due to the large size of the

runway, there is little occlusion problem. Only the noise from the line detection algorithm

has to be dealt with.

It is demonstrated in this chapter that, with the knowledge of the approximate

camera state information, computation complexity and recognition quality can be greatly

improved. The recognition of the runway has several advantages. First, detection of the

runway verifies that the aircraft is heading in the correct direction, and hence, increases the

landing safety. Second, it is possible to use the recognized runway to refine the camera

state information, resulting in a more robust multi-sensor system. And finally, the image

w
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can be divided into several regions, such as the sky, the runway, and the regions outside

the runway. Different image analysis techniques can thus be performed in different areas,

which makes a speedup and better processing possible.

!

M
w

4. Position estimation for stationary objects

In autonomous navigation, it is essential to obtain a three-dimensional description of

the static environment in which the vehicle is traveling. For rotorcraft conducting low-

altitude flight, this description is particularly useful to detect and avoid obstacles in the

intended flightpath. This technique is generally referred to as structure from motion

(Longuet-Higgins, 1981; Spetsakis & Aloimonos, 1987; Tsai & Huang, 1984; Tseng &

Sood, 1989; Weng et al., 1992), where the 3D structure of the static scene is estimated,

using more than two image frames captured at different camera locations and/or

orientations. Many approaches have used line or point correspondences among two to

four images to compute the camera motion and the scene structure (McIntosh & Mutch,

1988; Mitiche et al., 1989; Liu & Huang, 1988). Results showed that the solutions from

these methods are very noisy. Other approaches overcome this problem by integrating

information from a long sequence of images and Kalman filtering is a common choice to

obtain a smoothed estimate. The Kalman filtering technique is popular because of its

elegant way of handling uncertainty and providing incremental processing. Broida and
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CheUappa (1986) used Kalman filtering as a recursive means to estimate object motion

parameters. Matthies et ai. (1989) built a framework which gives depth estimates for

every pixel in the image. In their experiments, the side-viewing camera is assumed and the

camera motion is only translational in the vertical direction. Under such conditions,

feature tracks will follow the vertical image scan lines, and feature matching becomes

much simpler.

Baker and Bolles (1989) used Epipolar Plane Image (EPI) Analysis for static scene

analysis. In their approach, the camera moving path is known and linear. Therefore, each

image frame can be decomposed into a set of epipolar lhtes. Supposing the environment

is static and the camera is moving in a straight line, the epipolar lines are the paths the

motion of the features will follow between image frames. This phenomenon is called the

epipolar constraint since image features are constrained to move only along the epipolar

lines. If a sufficient number of images are accumulated to form a solid block referred to as

the spatiotemporal (ST) data, an epipolar plane image can be created by collecting

corresponding epipolar lines in each image frame. Furthermore, in their experiments the

camera is moving only laterally and the camera viewing direction is always orthogonal to

the motion path. In such a simple case, an EPI will be a horizontal slice of the

spatiotemporai data, and the apparent motion track of a feature on the EPI will be a

straight line. The feature motion analysis thus becomes merely a line fitting process on the

EPI, and the 3D location of the tracked feature can be determined by the parameters of the
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fitted line. In the case of forward linear camera motion, however, the feature tracks will

be hyperbolas and curve fitting becomes necessary. Sawhney et al. (1993) reported that

curve fitting is much more difficult and noisy, making this approach less robust. In

another paper by Bolles et al. (1987), the Kalman filtering technique is used to estimate

the range in the case of forward linear camera motion. Also dealt with was the nonlinear

camera motion case where the nonlinear motion path is restricted to be on a horizontal

plane and where only one of the EPIs in the spatiotemporal data, parallel to the motion

plane, can be analyzed. This restriction makes their approach less useful in practice.

In the course of navigation, the robot or the vehicle has to estimate the range from

an obstacle to the camera in order to avoid it by changing its nominal path. Several

methods for range estimation have been investigated at NASA Ames Research Center

(Bhanu et al., 1989b; Cheng & Sridhar, 1991; Roberts et al., 1991; Smith et al., 1992;

Sridhar et al., 1989; Sridhar & Phatak, 1988). Their main approach is also to use Kalman

f',ltering to recursively refine the estimated range. In this chapter, an approach (Tang &

Kasturi, 1994) is developed for stationary object position estimation using known camera

state parameters. The epipolar constraint is the main criterion in lracking image features.

Since the camera state information is continuously available from the onboard navigation

system, it can be used to facilitate the process of scene reconstruction. For example, the

location of the focus of expansion (FOE) in the image plane can be readily determined. In

addition, if the image acquisition rate is high enough, an image feature will not move by
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more than a few pixels in the next image flame. The correspondence problem between

successive images can thus be minimized. The camera state information and high image

acquisition rate are the two main requirements for the proposed method. As is well

known, depth estimation under the forward moving camera situation is difficult and noisy

because the optical flow in the image is generally small compared to lateral motion cases,

especially when objects in the scene are far away from the camera. This problem is

overcome in the proposed algorithm by integrating information over a long sequence of

images. As image frames are accumulated, the range estimates can be refined by taking

more data into account. Hence, estimates will be more accurate. In our approach, the

problem of genera/ 3D camera motion is dealt with.

camera motion path into piece-wise linear segments.

This is handled by breaking the

Through this process, the camera

path determined by two successive camera locations is approximated as a straight line.

Epipolar planes can thus be set up for each pair of images, and motion analysis is

repeatedly performed on each pair of image frames. The developed algorithms were

tested on the helicopter image sequences.

4.1. Constructing the Epipolar Lines

As is well known, if the scene is static and the camera is moving in a straight line, the

motion path of image features between successive images will follow a line termed the

epipolar line. This constraint is thus called the epipolar constraint. This constraint gives

rr.-_
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a strong restriction in confining the apparent motion directions of image features. If the

epipolar lines are available in the image, the problem of feature tracking can be

significantly simplified. In fact, the epipolar lines are determined by the epipolar planes as

shown in Fig. 4.1, where all image frames share a common set of epipolar planes. As can

be seen in the figure, no matter how the camera changes its location and orientation, as

long as the motion path is linear, all the fines-of-sight (projection lines) from the camera

centers to a particular static world point always lie on the same epipolar plane which is

determined by the 3D location of the scene point and the camera path. The intersections

of the epipolar planes and an image plane defines the epipolar lines. Any image feature

will then drift between images only along the corresponding epipolar line. Therefore,

tracking of an image feature is simple _just along the epipolar line.

Since we are dealing with general 3D camera motion, the moving path of the camera

is not a straight line, and its orientation is not constant during motion. Fig. 4.2 illustrates

such a situation, where the camera's path is an arc. Even if the camera is fLxed on the

helicopter, its orientation is still changing because the helicopter body orientation is

changing during nonlinear motion. The location of the FOE on the image plane also

changes significantly. In this case, there is no common set of epipolar planes for all the

image frames. Hence, it is impossible to perform analysis using the epipolar constraint.

This problem is overcome in the proposed method by using the piece-wise linear

approximation for the camera path. Since the image acquisition rate is very high (30

u
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frames/see), between two consecutive image frames, the camera path can be approximated

as linear and hence a pencil of epipolar planes can be created. Analysis using the epipolar

constraint is thus possible. In the following, the construction of the epipolar planes and

lines is described. The appendix gives a more detailed description.

Camera f
path

Lines-of-sight

Image plane (perpendicular
to the camera axis)

e

c3

ei : epipolar planes

e : epipolar line

f : the world feature point

c i : positions of the camera center

e

:he"

Radial

c I

Camera axis

Fig. 4.1: Geometric relationships between the camera path, the epipolar planes, and

the epipolar lines. The camera is moving in a straight line and its orientation is
constant.
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Camera FOE in the image

Image planes

Fig. 4.2: There is no common set of epipolar planes if the camera path is not linear. The
locations of the FOE in the images also varies.

For each pair of image frames, the camera path parameters are first computed from

the input camera state data. A pencil of Q epipolar planes, {Pj}j=O...Q-1, is then defined,

which all intersect at the camera path as shown in Fig. 4.1. Q determines the resolution of

the 3D space (Q is set to 100 in all the experiments). The angle between two adjacent

epipolar planes Pj and Pj+I is equal to rt/Q. The result of this process is the construction

of a pencil of epipolar planes equally spaced in terms of their angular orientations; they all

intersect at the camera path. After creation of the epipolar planes, epipolar lines on each

image plane can thus be determined by intersecting the image plane with the epipolar

planes. The process of creating the epipolar lines is repeatedly performed on each pair of

image frames in the sequence. Fig. 4.3 shows the epipolar lines superimposed on the
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edge-detected images of the line sequence. The intersection of all the epipolar lines shows

the location of the FOE in the image. Even for the line sequence in which the FOE is

expected to remain at the same pixel location in the image, it changes by about 25 pixels,

both horizontally and vertically. For the arc sequence, the FOE location varies by about

70 pixels horizontally and 30 pixels vertically.

-
....... . \ ..,, ..; .:._,., ...... L__..__._

(a) (b)

Fig. 4.3: The epipolar lines superimposed on the edge detected images (every

tenth line is shown). (a), (b): the first and the last frames of the line sequence.
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In dealing with general camera motion, the camera orientations for two flames are

likely to be different. Traditional feature matchers try to search target features within the

neighborhood (i.e., the 2D search window) surrounding the source feature to be matched.

With the information of the camera state, we argue that this method of positioning the

search window is inappropriate because the term neighborhood is improperly defined.

The following statement is one of the implicit assumptions in defining the neighborhood to

be a 2D window centered around the source feature:

4.2. Feature Detection and Tracking

The purpose of constructing epipolar lines is twofold: to detect features and to

facilitate feature tracking. Features in an image are def'med to be the intersecting points

between the epipolar lines and the edge pixels detected by Canny's edge detector (Canny,

1986). The features are extracted from the first image by tracing the pencil of epipolar

lines, {lj}j=O...Q_I. The result will be Q sets of feature points. Feature detection and

tracking on the following frames are completely independent among these sets. To obtain

good localization of detected features, the edges in the image should be nearly

perpendicular to the epipolar lines. It is obvious that since Q directly determines the

number of features to be processed, we can easily increase or decrease the number of

features by adjusting the value of Q.
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"Since the image acquisition rate is high enough that the camera will not move

for a long distance between two consecutive frames, the source feature will not

move by more than a few pixels in the next image plane."
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We find this statement is sustained only if the camera orientation keeps approximately

constant during the camera motion. As is well known, even a small amount of camera

rotation can actually create large image feature motion in the image plane. Hence, the

camera rotation has much more influence on image feature motion compared to camera

translation, especially when the distance from the camera to a world feature is very large

compared to the distance the camera travels between two consecutive frames. This can be

best illustrated with the 2D world shown in Fig. 4.4, where the camera moves from c 1 to

c2 with orientation changes. The projections of a far-away world feature onto the two

frames are Pl and P2, respectively, and p[ specifies the same image location as Pl in the

second frame. Due to large camera rotation, P2 is not, however, at the neighborhood of

p_. Under such conditions, the search window should be positioned around P2 instead of

p[. This is exactly our situation where the velocity of the camera is about 1 foot/frame

and the major features of interest in the image are hundreds of feet away. Also, for the

arc sequence, the instantaneous orientation of the camera is continuously changing since

the flight path is nonlinear. Experiments showed that if we perform tracking on the arc

sequence by searching the neighborhood of the source feature, the correct corresponding

feature may be completely out of the search window.
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From theargumentabove,thetermneighborhood can be redef'med as follows. It is

observed that the only thing guaranteed by high image acquisition rate is that the vector of

the lines-of-sight to a far-away world feature will not change drastically between two

consecutive frames, i.e., the vectors Vl and _2 in Fig. 4.4 should be approximately the

same. Hence, the neighborhood of feature Pl is redefined as "the region surrounding the

intersection between the image plane of frame 2 and the vector through c2 and parallel to

Vl-" And the feature tracker will search within this newly def'med neighborhood for a

match for feature P l. This is the main reason for the success of the proposed feature

tracker.

Cl

To the wodd feature point

_p]'

Frame 2

Fig. 4.4: The orientation of the lines-of-sight to a far-away feature

remains approximately the same between images. However, the

orientation of the camera may change drastically.
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The feature tracker is implemented as follows. For each pair of image frames, the

locations of the FOE on each image plane are first computed. Let subscripts 1 and 2

denote the time instance of the first and the second frame, respectively. For each image

feature at location Pl in the first frame, I 1, we first compute Vl, which is the 3D vector

from the camera center c 1 to Pl. And then, the hypothetical location P2 is obtained by

intersecting 12 with the vector _1 passing through camera center c2. Incorporating the

epipolar constraint, instead of searching within a neighborhood centered around P2, the

feature tracker searches along the direction of the epipolar line, which is determined by the

FOE and P2. This neighborhood is actually a one-dimensional (1D) search window

oriented in the direction of the corresponding epipolar line as shown in Fig. 4.5 (in the

experiment, seven pixels are used as the window size). Feature detection and tracking are

then performed within this window on the second image. Note that, in order to reduce the

amount of computation, the feature detection and tracking are performed based on the

edge pixels only. For more robust feature tracking, the intensity distribution around a

feature should be considered.

Within a small 1D neighborhood, there are a number of source features in the first

frame and a number of target features in the second frame. They are to be matched.

Depending on the matching results, a feature can be labeled as matched, new, no match,

and multiple matches described as follows:
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Fig. 4.5: The 1D search window

1. Matched: There is only one target feature. If there are several source features that are

competing for the target (i.e., the occlusion case), the target will be matched to the source

feature that has a stable position estimate. The position estimate of a feature is considered

stable at time t if its estimated position remains approximately the same through several

frames:

t-1

] E{(_(k_+_t)2+(_rk__t)2+(_k__t)2}<T,
k=t-r

(4.1)

A ^ ^

where (Xk,Yk,Zk) is the estimated position at time k, T is a threshold and r is the number

of frames considered (r is set to 10 in the experiments). If two or more source features
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have a stable position estimate, the local slope of their tracks is compared to determine the

best match result. The comparison is based on the fact that the image feature

corresponding to a more distant world feature will create less optical flow in the image.

Fig. 4.6(a) illustrates such a situation. Supposing source A and B in the first frame (frame

3) can both match to target C in the second frame (frame 4), the feature track with a

steeper slope (solid squares), i.e., the one which creates less optical flow along the

epipolar line, should correspond to the feature which is more distant from the camera.

Since only the near feature can occlude the farther one, target C should be matched to

feature A. For the matched source feature, its location in the image will be updated and its

3D position estimated (described in the next section). Feature B will be thereafter labeled

as no match and handled as described later.

2. Ne....._w:When a target feature has no source feature to match, it is classified as a new

feature and a feature node will be created in the database.

3. NO match: Here, the source feature does not match any target feature. This may be

due to the failure of feature detector, occlusion, or feature moving out of the image. For

the last case, which can be easily detected, the source feature is simply removed. For the

other two cases, if the source feature already has a stable 3D position estimate, the feature

tracker will make a hypothesis about its image position based on its 3D position estimate.

No estimation will be performed on these features except for updating their 2D positions,
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using the hypotheses. Features with no stable position estimates, since we have no reliable

information about their position, remain in their current state awaiting possible matches in

the future. A maximum number of consecutive no-matches is defined to remove those

features being occluded or missed by the detector for a long time.

4. Multiple matches: In this case, more than one target feature appears within the

neighborhood. This may result from feature disocclusion or be due to the noise from the

feature detector. The goal here is to choose the best match. Cox (1993) reviewed some

of the approaches: nearest-neighbor (Crowley et al., 1988), Mahalanobis distance

(Therrien, 1989), track-splitting filter (Smith & Beuchler, 1975), joint-likelihood

(Morefield, 1977), etc. In our problem, since the epipolar constraint already gives an

effective means to improve the tracking process, simple techniques are used to resolve this

confusion and at the same time reduce the algorithm complexity. This idea is also

supported by three observations. First, if the feature already has a stable 3D position

estimate, the best match can be easily found by projecting its position estimate onto the

second image and hence the target feature near the projection will be chosen as its match.

Second, according to the epipolar constraint, actually only one direction, away from FOE

when the camera is moving forward, is possible for the feature motion under noise-free

circumstances. Hence, the feature motion conforming to this constraint should be

favored. And finally, the size of the search window is small, giving only a small number of

multiple matches. With these observations, three criteria are used for choosing a best
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match. They are listed in the following according to their priority: (1) the one that

satisfies the position estimate; (2) the one that is in the direction away from the FOE and is

nearest; and (3) the one that is in the direction towards the FOE and is nearest. These

three criteria also determine the weights in the position estimation. The weight for each

criterion is Wp, We, and Wn, respectively, where 0 < wn < we < Wp < 1. The main reason to

include (3) as a legal match is to compensate for feature detection noise. Fig. 4.6(b)

demonstrates how the feature tracker performs the matching task under a complicated

situation. Source feature A in Frame 2 is searching for a best match among the target

features in Frame 3. Correct track is AEFG, but feature E (the blank circle) is missed by

the detector. There are also a disocclusion, feature B, and a noise, feature N. Several

scenarios and consequences are possible in the tracking process as listed below:

Scenario h

Condition: Feature A is stable, feature B is chosen as the best match, and feature F is in

B's search window in Frame 4.

Consequence: Since B does not satisfy the estimated location of A, it will be lightly

weighted in the position estimation and has little contribution to the estimate.

However, according to the estimated position, the tracker will choose the correct

match, feature F, as the best match in frame 4.
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Feature A is stable, feature B is chosen as the best match, and feature F is

not in B's search window or is missed by the detector.

on__enee: The tracker will follow the track ABC, which is incorrect for feature A.

Features B and C will contribute lightly to the position estimate. The tracker,

however, may still make correction on its tracking if it is possible to match feature G

to feature C in Frame 5. For such a case to happen, feature G has to be in the search

window of feature C; otherwise the tracker will follow the path of the triangles

thereafter, and the position estimates will gradually become unstable. Such a feature

can be recognized by noting that its position estimate is still unstable after lengthy

tracking. We then have to reset their estimates and start a new estimate similar to that

for newly appeared features.

Scenario 3:

Condition: Feature A is stable, feature N is chosen as the best match.

Cons u_: This is similar to the above two eases. Feature N has little contribution

to the position estimate, and if feature F is in the search window of feature N, the

tracker may be able to correct its tracking at Frame 4. If feature F is missed or is not

in N's search window, feature C will be chosen in Frame 4. The feature tracker may

still find the correct match, feature G, in Frame 5 if G is in C's search window;

otherwise, the tracker will follow the triangle path as described in Scenario 2.
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Positions of features along an epipolar line

Frame #

1 --@- -I--

2 ---@ --I--

3 --AoIB

4 _C

5 • --

N:_ B_, 0 E

C

D

(a) (b)

Fig. 4.6: Two matching cases: (a) Occlusion; (b) Disocclusion, missed
features, and noise.
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Scenario 4:

Condition: Feature A is not stable.

C.onsequenc¢: Either feature B or N may be chosen to be the best match in Frame 3, and

the tracker will follow either the path of triangles (ABCD or ANCD) if feature C is the

best match in frame 4 or the path of circles (ABFG or ANFG) if feature F is the best

match instead. This does not matter too much since no reliable information has been

accumulated and these matches are lightly weighted in the position estimation.

Feature matching is difficult and may contribute most of the error to the estimation.

From the analysis above, we can see that the epipolar constraint helps to simplify and
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improve the matching quality. The feature tracker may be further improved by

incorporating more clues, such as the intensity distribution, edge strength, and edge

orientation.

w

-__-_

4.3. Position Estimation and Experimental Results

The incremental weighted least squares is used for estimating the 3D position of the

features being tracked. The main reason for that is its simplicity. Kalman f'fltedng is

another choice as described in (Matthies et al., 1989). However, it is desired to

demonstrate that using the proposed feature tracker, a simple estimation method can still

achieve accurate estimates. As is known, the line-of-sight determined by the camera

center and the image feature position will also pass through the 3D position of the world

feature. As time elapses, for a certain feature, a set of lines-of-sight can be obtained,

which, theoretically, will intersect at its true 3D position. However, due to the finite pixel

size, inaccuracies both in the camera parameters and in the feature's image plane

estimates, these lines do not exactly intersect at a world point. This suggests that the

point fitting technique can be a good means to perform the estimation. Let (a k, b k, Ck) be

the normalized direction vector of the line-of-sight and (Xck, Yck, Zck) be the position of

the camera center at time k. The distance dk between the 3D feature position (X, Y, Z)

and the line-of-sight can be computed as:
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dk = {[Ck (Y - Yck)-bk(Z- Zck)]2 + [ak (Z - Zc k )_Ck(X - Xck )]2 +

[bk(X- Xck )-ak(r- Yck )]2}.

The objective

distances, i.e.,

function J can be defined as the sum of the weighted squares
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(4.2)

of the

L=

J

i

mt ",'

t

J =E w,d ,
k--I

(4.3)

where w k is the weight and t is the current time. J is minimized to obtain a weighted least

squares estimate. This results in a linear estimation problem after differentiating J with

respect to X, Y, and Z. The summation is performed incrementally, and as more data are

acquired, the estimate is expected to converge to its truth value. The weight is determined

by the result of matching, as described in the previous section. It is def'med as:

wp, first crifion is satisfied (stable position estimate), else

wk = ]w e, second crition is satisfied (epipolar constraint), else
[w n, third crition is satisfied (nearest),

where 0 < w n < we < Wp < 1 (the values are chosen based on experimental heuristics:

Wp = 0.9, w e = 0.8, Wn = 0.7).

For the line sequence, the tracking for the five trucks is successful. Fig. 4.7 shows

the position estimates and the relative estimate errors of Truck 1 (right most) as a function
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of number of frames processed. The relative error is defined as the difference between the

estimated value and the ground truth divided by the Euclidean distance between the

camera center and the ground truth. We can see from the figures that the estimation

converges after 10 frames and that the relative errors of the estimates for the range, cross

range, and height after convergence are within 5%, 1%, and 1%, respectively. As the

frame acquisition rate is 30 frames/see, the estimate converges in less than one second.

The reason for this fast convergence is that Truck 1 is the nearest, and the average number

of pixels moved between two consecutive frames is about 0.7. The fast moving image

features provide better optical flow information for motion estimation. The more accurate

estimates are the cross range (Y) and the height (Z) estimates, since there is little lateral or

vertical motion. The least accurate is the range (X) estimate, since the helicopter is

moving forward. Due to this fact, in all the experiments, the cross range and the height

estimates are always more accurate than the range estimates, which have relative errors of

about 1%. Table 4.1 summarizes the range estimates for all the five trucks in the line

sequence. It is shown that the number of frames needed for the range estimates to

converge within 10% error increases as the distance to the truck increases. Truck 5 needs

more than 90 frames to obtain a more accurate estimate because it is farthest, and the

average number of pixels of image feature movement is only 0.1 pixels. Experiments are

also performed on the arc sequence; Table 4.2 summarizes the estimates. The la'acking of

Truck 4 is not quite successful. The reasons are that during the initial several frames, the
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detected edge is approximately parallel to the corresponding epipolar line, making the

tracking more difficult. However, its position estimate converges to within a 25% error

after tracking through 90 frames. The estimate would converge to the correct value,

provided that more image frames were accumulated.

The experimental results are also compared with those reported by Smith et al.

(1992). Table 4.3 summarizes the comparison. As can be seen in the table, the range

estimates are considerably better than theirs except for Truck 1. However, as stated in

their paper, the length of each truck is 20 feet in length. Range errors less than about 10

feet are unimportant because they indicate range estimates which lie between the front and

back of a truck.

4.4. Analysis

In this chapter, a motion estimation system is described that is capable of accurately

estimating the 3D object positions in the scene. The piece-wise linear approximation for

the flight path is used to facilitate the construction of the epipolar planes and lines. This is

very suitable for rotorcraft having an onboard inertial navigation system, where the camera

states are always available. The piece-wise linear approximation turns out to be a good

method to solve the difficult motion problem resulting from general 3D camera motion.

An efficient feature tracker is also developed which makes use of the epipolar constraint to

achieve good feature matching results. The weighted incremental least squares estimator
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then performs the position estimation. The final relative error of the range estimate for the

object approximately 176 feet away (Truck 1 in the line sequence) is less than 3%, which

corresponds to only 5 feet absolute error. In addition, the range estimation for Truck 1

takes less than 10 frames to converge within 10% error. Since the speed of the helicopter

is 35 feet/sec in the line sequence, this gives the pilot about 8 seconds to avoid the

obstacle. For the estimation on other trucks, the pilot actually has ample time to make a

decision about the flightpath. Currently, the algorithms run at the rate of two frames per

second on a DECstation 5000/240 for tracking several hundreds of features on image

sequences (this excludes the edge detection; the image is of size 512×512 pixels).

However, optimization for throughput was not a consideration in this work.
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Fig. 4.7: Position estimates of truck 1 (a), (b), (c) and relative errors (d) as a function of

the number of flames processed. The ground truth is (X, Y, 27) = (461.5, 472.3, 3.0) with

accuracy +_2feet.
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Table 4.1: Position estimates of various trucks after processing 90 line frames.
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Truck 1 (fight most)
Truck 2 (left most)

Truck 3 (between

center and fight most)
Truck 4 (between
center and left most)

Truck 5 (center)

Initial and final

ranges (unit: feet)

(272.7, 176.1)
(365.5, 268.9)
(503.0, 406.4)

(615.9, 519.3)

(771.8, 675.2)

Absolute errors
(unit: feet)

(5.1, 0.1, 3.8)

(5.1.0.6.2.0)
(12.2, 0.5, 1.2)

(37.3, 6.0, 0.3)

(83.7, 0.4, 0.5)

Relative errors
(unit: %)

(2.7, 0.03, 2.0)

(1.8, 0.2, 0.7)

(2.8, 0.1, 0.3)

(7.0, 1.1, 0.1)

(12.4, 0.1, 0.1)

# frames for

10% range
estimate error
5

20
30

70

> 90

Table 4.2: Position estimates of various trucks after processing 90 arc frames. (Truck 1 is not visible
in all frames).

Truck 2 (left most)

Truck 3 (right mos0
Truck 4 (second
from left)

Initial and final

ranges (unit: feet)

(224.9, 107.5)
(384.6, 267.2)

Absolute errors

(unit: feet)

(2.6,1.3,0.6)

(4.1, 1.9, 1.7)
(475.3,357.9) (90.0, 19.2, 0.6)

Truck 5 (second (631.2. 513.8) (79.6, 3.7, 1.3)
from right)

Relative errors

(unit: %)

(1.7, 0.8, 0.4)

(1.5, 0.7, 0.6)

(24.5, 5.2, 0.2)

(14.9, 0.7, 0.2)

# frames for 10%

range estimate
error

20

20
> 90

> 90

Table 4.3: Comparison of the estimated range values for objects in the line sequence.

# frames

processed
Absolute range errors by
Smith's approach (unit: feet)
1.8Truck 1 60

Truck 2 60 5.5 0.1

Truck 3 60 56.4 16.5
Truck 4 60 93.8 70.7

Truck 5 60 139.2 100.6

Absolute range errors by
our approach_(unit: feet)
5.1
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5. Summary and Conclusions

A vision system for runway recognition and obstacle detection has been developed

for low-altitude flying aircraft/rotorcraft. This system provides a general approach to

assist pilots in recognizing objects and detecting obstacles. Four main functions of the

system are identified: ftrst, the runway is recognized as the aircraft is approaching the

airport; second, moving objects in the scene are detected; third, the moving objects are

tracked in the image sequence and their motion parameters are estimated; and fourth, the

positions of the stationary objects are estimated. Of the four functions identified above the

algorithms for runway recognition and estimation of position for stationary objects were

presented in this report. These estimates provide vital information to enhance the safety of

navigation and to relieve pilots from tiring, monotonous control of aircraft as well. This

research clearly demonstrates the potential for using a computer vision system for the

automation of navigation.

Real world flight images have been used to demonstrate the feasibility of estimating

object structures/motions from an aircraft equipped with a single camera and an inertial

navigation system (INS). Several difficulties in the research area of computer vision can

be overcome by utilizing the camera motion information provided by the INS. They are

listed as follows:

_lr _¸
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1. As indicated in section 2.3, by incorporating the camera pose information, the

computational complexity of model-based object recognition can be reduced from O(mn)

to O(m), where m is the number of model features and n is the number of image features.

2. It is difficult to perform the structure from motion technique when the camera's

moving path is not linear. With camera motion information, the path can be approximated

as piece-wise linear, hence facilitating the estimation of object positions.

Now consider some possible future directions of research. First, throughout this

work, the camera motion information is assumed available and reasonably accurate. No

attempt has been made to estimate the camera motion parameters. It is desirable,

however, to utilize the image analysis results as feedback to ref'me the camera motion

information. It is also possible to use other sensors, such as forward looking infrared

(FLIR), millimeter waves (MMW), and low-light-level-television (LLLTV), together with

the visible light sensors in order to deal with different weather conditions. Such a multi-

sensor system provides more accurate camera information and hence results in much

better motion analysis. Second, this research has been dealing with monocular sequences

of images. Using stereo sequences of images is expected to render better results. Hence,

research topics involving stereo image analysis need further study. Third, real-time

implementation is another important issue since accurate real-time response of the

navigation system is essential to keep the aircraft from coUision. And finally, the
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interactions between the vision system and the control system have to be studied in depth

in order to build a completely autonomous navigation system.
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CONSTRUCTION OF THE EPIPOLAR PLANES AND LINES

108

W

To construct a pencil of epipolar lines on an image plane, the epipolar planes have to

be created first. The epipolar planes are defined as a pencil of planes all intersecting at the

linear camera motion path. The number of epipolar planes thus determines the 3D

resolution of the space. The epipolar lines are just the intersections of the epipolar planes

and the image plane. Two pencils of epipolar lines created at different camera locations

may not appear the same on the image planes depending on the orientations of the camera

at the two time instances. However, the epipolar planes always remain the same as long

as the camera is moving along a straight line. In this appendix, the procedures in

constructing the epipolar planes and lines are described in detail.

A.1. Camera Path

Assuming the camera is moving along a straight line and given two camera center

locations, Pi = (Xi, Yi, Zi) and Pi+,= (Xi+_, Yi+_, Zi+_), at time instances i and i+1, the

expression of the camera path L can be represented as
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where _ _--(al, a2, a3) T is the unit directional vector of L.

(A.1)
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A.2. Epipolar Planes

The epipolar planes are defined to be perpendicular to the camera path L and equally

spaced in terms of their orientation. To define a pencil of epipolar planes, the first step is

to create a set of vectors {_j }j=0...Q-1, all perpendicular to the camera path, where Q is

the number of epipolar planes. Each epipolar plane is then determined by two vectors,

i.e., _jand d. The procedures for deriving vector _j are described as follows. First,

according to the definition, we have

fjl_ _ _j'_=O (A.2)

Since any two adjacent epipolar planes have equal angular spacing, the angle between _j

and _j+l is rt/Q. Let vector t 0 be parallel to the world XY plane and 0j be the angle

between vectors _j and t 0 as shown in Fig. A.1. C0 can thus be represented by

v0 = (a_,a_,0) r , and since v0 _1__, vector v0 can be computed as:

_o±_ =:> v-'0"_=0 _ ala_+a2a_=O (A.3)
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Fig. A.I: An epipolar plane Pj is determined by two vectors, _j and d.

_ -a2 a1

'

The following equation is therefore readily available:

vj " Vo =cos Oj, j=O .... Q-l, and O<Oj<rt

(A.4)

(A.5)
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Letting _j = (Vl, v2, v3)T , three simultaneous equations can be obtain as _j is a unit

vector, v0 _1_d, and fj • v0 - cos ej:

alv 1 + a2v 2 + a3v 3 = 0

-a2v 1 +alv 2 =_+a 2 cos0j

(A.6)

The solution to _j is:

1
V 1 --

1

v2 = _ + a 2

v2 = Yr_al 2 + a_ sin0j

a cos Oj +.ala 3 sin 0j)

(-a I cos0j +a2a3sinOj) (A.7)

For a special case where the camera is moving only in the Z direction, i.e., (al=a2=0),

vector _j can be computed as gj =(cos0j, sin0j, 0) T. As an epipolar plane Pj is

determined by two vectors, 8 and gj, the normal vector/_j of Pj is determined by:

ff,j = _j x _ = (a3v2-a2v3, alv3-a3vl, a2vl-alv2) T (A.8)

Having the normal vector and the camera path, each epipolar plane is therefore fully

specified.
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A.3. Epipolar Lines

The pencil of epipolar lines are the intersections of the image plane I i at time i and

the pencil of epipolar planes. An epipolar line in the 3D space is specified by a unit

directional vector _ and a point which is well-known as the focus of expansion (FOE).

The first step is to determine the location of the FOE at time i, which is described in

Section A.3.1. And then, Section A.3.2. shows how to derive the unit directional vector.

A.3.1. Location of the FOE

The location of the FOE at time i is the intersection of the camera moving path and

the image plane I i. Since the moving direction of the camera is known, all that needs to

derive is the image plane. This information can be obtained by deriving the normal unit

vector of the image plane. The camera viewing direction, namely the direction of the

optical axis, is the vector (1, 0, 0) T in the camera coordinate system. It is also the normal

vector of the image plane. Since the rotation matrix from the world to the camera

coordinate frame is expressed by Rce = R(_ce , Oce, ¢ce), the camera viewing direction at

time i can be represented by the vector c i with reference to the world coordinate system:

?i --- (Cl, c2, c3) T =Rce _ " (1, 0, 0) T (A.9)

Knowing the camera moving direction a and the normal vector of the image plane, the

location of the focus of expansion (FOE) with reference to the world coordinate system
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earl be computed. As shown in Fig. A.2, supposing the camera center is (Xci, Yci, Zci) T

at time i, we have

_lm=v

÷

FOE/- (Xfi, Yfi, Zfi) T = (Xci, Yci, Zci) T + f a
Ci "a

Let the translation matrix from world to camera coordinate system be Tce.

of the FOE/in the camera coordinate, (f, Yfi, zfi), can be obtained:

(A.IO)

The location

(f, yfi, zfi) = Rce " ((Xfi, Yfi, Zfi) T -Tce ) (A.11)

A.3.2. The Normal Vector of the Epipolar Line

Let {eij}j_-O...Q_l, be the pencil of epipolar line on image plane I i. All eij's pass

through the focus of expansion. Since the epipolar lines are the intersections of the

epipolar planes and the image plane, eij will be perpendicular both to the camera viewing

direction ci and the normal vectors ff,ijof the epipolar planes. Let the normal directional

vector of eij be eij, hence

_ij-L ?i, eijA-Eij _ e-ij =ci xff_ij (A.12)

Let _iij = (0, ey,e z)T be the unit directional vector of the epipolar line e_ in the camera

coordinate system, the epipolar line on the image plane I i can be specked as a Fine
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function, in which the epipolar line passes through the FOE/=(/', yf, zf) T and has a unit

directional vector (ey, ez)T:

Y - YJi _ z-zfi (A. 13)

ey ez

7_

g" Camera Moving
Direction

Camera Center
( sci , Yci,

Zci)__ I i : Image Plane

Fig. A.2: At time i, the image plane I i passes through the world point Pi.

The viewing direction is ci with reference to the world coordinate system.
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